© Springer-Verlag 1992

Theoretical calculations of 9SMo-NMR chemical shifts for compounds $[MoO_{4-n}S_n]^2$ ⁻

Sun Yue-ming, Zhu Long-geng, You Xiao-zeng*, and Jiang Yuang-sheng Coordination Chemistry Institute of Nanjing University, Nanjing, China

Received June 12, 1990/Accepted June 25, 1991

Summary. Theoretical calculation of ⁹⁵Mo-NMR chemical shifts for $[MoO_{4-n}S_n]²⁻$ (n = 0-4) compounds is reported here for the first time on the basis of Fenske-Hall method and Sum-Over-State (SOS) perturbation theory. A systematic decrease in shielding of ⁹⁵Mo nuclei with increase of number of sulfur in $[MoO_{4-n}S_n]²⁻$, which is observed experimentaly, can be reasonably explained by our calculation. A good linear relationship between chemical shifts of calculation and experiment is obtained. The electronic structure and bonding in these compounds are also discussed.

Key words: ⁹⁵Mo-NMR chemical shift - Compounds $[M_4 - n S_n]^2$

1. Introduction

⁹⁵Mo has a relatively high natural abundance (15.7%), good NMR receptivity (better than ¹³C), and quadrupole moment $(-0.019 \times 10^{-28} \text{ m}^2)$, similar to that of ¹⁴N). Chemical application of ⁹⁵Mo and ⁹⁷Mo ($I = 5/2$) NMR was initiated in 1975 by Vold [1] to study the protonation behavior of $[M_0O_4]^{2-}$ in the pH range 7-12. Soon after, Lutz, Nolle, and their coworkers investigated the ⁹⁵Mo-NMR spectroscopies of Mo(CO)₆, [Mo(CN)₈]^{4–}, and [MoO_{4-n}S_n]^{2–} $(n = 0-4)$ [2]. Recently, the study of ⁹⁵Mo-NMR has further developed [3, 4]. Although a lot of ⁹⁵Mo-NMR data have been accumulated, theoretical calculations of 95Mo-NMR chemical shifts have not been found in the literature. The results obtained by Fenske-Hall method and SOS perturbation theory are reported in this paper for the first time.

2. Method of caleulation

An approximation to the Hartree-Fock-Roothaan technique, the Fenske-Hall method, which is rather rigorous has been described elsewhere [5]. Formulas for

^{*} Senior Research Professor. Supported by Nature Science Foundation of China

calculating the NMR shielding constant, σ , on the basis of SOS perturbation theory are first proposed as follows [6]:

$$
\sigma = \sigma_d + \sigma_p \tag{1}
$$

$$
\sigma_d = \frac{2a^2}{3} \sum_{i}^{OCC} \langle \Phi_i^{(0)} | \frac{1}{r_m} | \Phi_i^{(0)} \rangle \tag{2}
$$

$$
\sigma_p = -\frac{a^2}{3} \sum_{i}^{OCC} \sum_{k}^{UNC} \left[\langle \Phi_i^{(0)} | \frac{L_m}{r_m^3} | \Phi_k^{(0)} \rangle \cdot \langle \Phi_k^{(0)} | L_m | \Phi_i^{(0)} \rangle \right. \\ + \langle \Phi_i^{(0)} | L_m | \Phi_k^{(0)} \rangle \cdot \langle \Phi_k^{(0)} | \frac{L_m}{r_m^3} | \Phi_i^{(0)} \rangle \left. \right] \Big/ (E_k^{(0)} - E_i^{(0)}) \tag{3}
$$

in which, σ_d and σ_p are diamagnetic and paramagnetic contributions, respectively. $\Phi_{\rm s}^{(0)}$ is the eigenfunction of the ground state; r_m is the distance between the mth electron and the magnetic nuclei: L_m is an operator of the angular momentum of the mth electron; a is a constant of 7.297; OCC means occupied orbitals and UNC means unoccupied orbitals; $E_s^{(0)}$ is the eigenvalue of the ground state. Equation (2) can be simplified in the Fenske-Hall approximation:

$$
\sigma_d = \frac{2a^2}{3} \sum_{i}^{OCC} \langle \Phi_i^{\prime(0)} | \frac{1}{r_m} | \Phi_i^{\prime(0)} \rangle + \sigma_{dmc} + \sigma_{dc}^{\prime}
$$
 (2)

wherein, σ_{dmc} is a contribution from the core electrons belonging to the magnetic nuclei, which is a constant. σ_{dc} is a contribution of core electrons belonging to other atoms surrounding the magnetic nuclei. $\Phi_j^{(0)}$ is an MO consisting of valence atomic orbitals. σ'_{dc} can be also simply calculated by point-charge approximation, written as:

$$
\sigma'_{dc} = \sum_{i} \frac{2a^2}{3} \frac{N_i}{R_i} \tag{4}
$$

in which, N_i is the number of core orbitals for the *i*th atom, R_i is the distance between the magnetic nuclei and the *i*th atom. Summation is carried out over all atoms surrounding the magnetic nuclei. By analogy, $\Phi_j^{(0)}$ can be substituted with $\Phi_j^{(0)}$.

3. Results and discussion

The geometric data of $[MoO_{4-n}S_n]^{2-}$ $(n = 0-4)$ are taken from [7-9]. Fenske-Hall parameters employed in the calculation are given in Table 1.

The successive substitution of oxygen, O, in $[M_0O_{4-n}S_n]$ ²⁻ by sulfur, S, results in a change of the symmetry from T_d to C_{3v} , C_{2v} , C_{3v} , and T_d , respectively. So, the orbital interaction in these compounds makes a corresponding change, too. For instance, the e irreducible representation in T_d point group represents π interaction, however, σ and π mixed interaction in $C_{3\nu}$ instead. MO energies and compositions for $[M_0O_{4-n}S_n]^2$ compounds are summarized in Table 2.

For $MoS₄²⁻ compound, as seen in Table 2, the LUMO, 2e, with main$ composition of d orbitals of Mo, is π^* -antibonding interaction between d orbitals of MO and p orbitals of S (see Fig. 1a), and 1e is π -bonding interaction between d orbitals of MO and p orbitals of S (see Fig. 1b). The HOMO, $3t₂$, is

$\zeta(\xi')$											
Atom 1s		2s	2p	$2p(\xi')$ 3s		3p	$3p(\xi')$ 3d 4s 4p		4d	$4d(\xi')$ 5s 5p	
	S 15.44271		5.4605 5.68105 2.1045 2.3228 1.32765								
Ω	7.555	2.25	3.68127 1.65372								
$Mo^{(0)}$	141.141	16.132 18.545			8.495 8.48					8.524 4.178 3.843 4.31 2.223 2.0 1.80	
Mo ^(IV) 3	141.138	16.143 18.543			8.49 8.478					8.522 4.248 3.938 6.154 2.812 2.0 1.80	

Table I. Fenske-Hall parameters

^a In the compounds $[M_0O_{4-n}S_n]^2$, although the formal oxidation number of Mo is VI, Fenske-Hall parameter of Mo(IV) is used in our calcalation due to consideration of Mo-O or Mo-S covalence

a weak π interaction among p orbitals of S with a little bit of mixing from orbitals of Mo magnetic nuclei. $2a_1$ is responsible for a weak σ interaction between p orbitals of S and s orbitals of Mo, and $2t_2$ for strong σ interaction between p orbitals of S and d orbitals of Mo (see Fig. 1c). 1 t_2 mainly consists of S atoms. The electronic structure and bonding of the other compounds is quite similar to that of $MoS₄²$, as shown in Table 2. The MO related diagram among these compounds is pictured in Fig. 2.

The difference in net charge on Mo, which is changed from 2.377 to 2.215, 2.041, 1.864 and 1.714 by successive substitution of O with S, is due to stronger electronegativity of oxygen, compared with sulfur.

It should be mentioned that the MO energies calculated by us are different from those recently computed by the X_{α} method [10] in an absolute sense. However, a parallel relation in order of MO energies obtained by the two methods is always kept, and the same conclusions on the electronic structure and bonding for these compounds can be drawn out qualitatively.

 σ_{dMoc} in Eq. (2), a contribution from core electrons of Mo magnetic nuclei itself is easily calculated to be $\sigma_{dMoc} = 4004.4$ ppm. σ'_{dc} in (2'), as mentioned above, can be calculated by two ways. The σ_{dc} together with $\langle 1/r \rangle$ listed in Table 3 are calculated by the program employed by us. The σ'_{dc} listed in Table 4 are obtained according to Eq. (4). Both results are almost shown the same values. The first term in Eq. (2'), a contribution from all valence MO designated by σ_d together with $\langle 1/r \rangle$ and $\sigma_d' + \sigma_{dc}$ are collected in Table 5. Comparing the $\langle 1/r \rangle$ values from $2t_2$ orbitals of MoS²⁻ and MoO²⁻, it will be found that some details of electronic structure in these compounds can be shown clearly. $2t_2$ orbital is of strong σ bonding between d orbital of Mo and p orbital of S or O, as described above. Since $\langle 1/r \rangle = 1.21862$ for $2t_2$ orbitals of MoS²⁻ is greater than $\langle 1/r \rangle$ r = 1.0837 for $2t_2$ orbital of MoO₄², it is expected that the electronic density of the σ bonding region for $2t_2$ orbital of MoS²⁻ is greater and closed to Mo magnetic nuclei, compared with that of $MoO₄² - A$ good linear relationship between the net charges on Mo and $\sigma_d' + \sigma_{dc}$ values for these compounds is given in Fig. 3.

The paramagnetic contributions, σ_p , from significant transitions are summarized in Table 6. As seen from the Table, the $2t_2$ -2e transitions in MoO₄⁻ and MoS²⁻ compounds make major contribution to σ_p (over 40% of σ_p). This transition is responsible for transferring σ -bonding interaction to π^* -antibonding interaction. The next major transitions come from $2t_2-4t_2$ and $1e-4t_2$, associated with σ - σ^* and π - σ^* , respectively. The transitions in MoOS²⁻, MoO₂S²⁻, and

216

 $\frac{1}{2}$

Sun Yue-ming et al.

217

Sun Yue-ming et al.

Fig. 1a-c. In MoS₄⁻ a one of the 2e orbitals shows π -antibonding interaction between the $Mo(d_{X^{2}-Y^{2}})$ and ligand p orbitals; **b** one of the 1e orbitals shows π -bonding interaction between the $Mo(d_{X^{2}-Y^{2}})$ and ligand p orbitals; c one of the $2t_{2}$ orbitals shows σ -bonding interaction between $Mo(d_{XY})$ and ligand p orbitals

Fig. 2. MO related diagram for $[MoO_{4-n}S_n]^2$ compounds

⁹⁵Mo-NMR chemical shifts for compounds $[MoO_{4-n}S_n]^2$ ⁻

n	0				4
Atom	$\langle 1/r \rangle$				
Ω S.	1.19588	0.89691 1.21653	0.61574 2.43846	0.29646 3.6446	4.88104
σ'_{dc}	42.455 ppm	75.029 ppm	108.427 ppm	139.912 ppm	173.282 ppm

Table 3. Diamagnetic contributions σ'_{dc} of the electrons of O and S atomic core orbitals

Table 4. σ'_{dc} calculated with Eq. (4)

n	0				4
Atom	N/R	N/R	N/R	N/R	N/R
\mathbf{o}	1.19586	0.8969	0.6157	0.29645	
S		1.2165	2.438	3.6445	4.877
σ'_{dc}	42.455 ppm	75.029 ppm	108.409 ppm	139.908 ppm	173.138 ppm

Table 5. Diamagnetic contributions σ'_d of $[M_0O_{4-n}S_n]^2$

	T_d			C_{3v}			C_{2v}		
	$n=0$	4		1	3		$\overline{2}$		
MO	$\langle 1/r \rangle$	$\langle 1/r \rangle$		MO $\langle 1/r \rangle$	$\langle 1/r \rangle$		MO $\langle 1/r \rangle$		
1t ₂	0.93620	0.69880	$1a_1$	0.30782	0.30849	$1a_1$	0.31936		
$1a_1$	0.30395	0.21816	$2a_1$	0.25777	0.25819	1b ₂	0.32365		
$2t_2$	1.0837	1.21862	1e	0.62648	0.52173	$2a_1$	0.25948		
1e	0.72725	0.66217	$3a_1$	0.35614	0.29892	$1b_1$	0.26185		
$2a_1$	0.24722	0.24743	2e	0.76056	0.70419	2b ₂	0.33713		
$1t_1$	0.93052	0.70838	$4a_1$	0.17770	0.20510	$3a_1$	0.33600		
3t ₂	0.84424	0.79396	3e	0.71821	0.68594	1a ₂	0.36922		
			4e	0.59011	0.52294	4a,	0.37037		
			$5a_1$	0.25217	0.20625	$2b_1$	0.35670		
			5е	0.50639	0.50671	3b ₂	0.29069		
			$1a_2$	0.32661	0.28786	$5a_1$	0.21251		
						$3b_1$	0.28090		
						$6a_1$	0.21840		
						4b ₂	0.25067		
						$2a_2$	0.31790		
						$4b_1$	0.27058		
σ_d' $\sigma'_{d} + \sigma'_{dc}$	180.1 ppm 222.555 ppm	161.442 ppm 334.724 ppm	σ'_{α}	173.239 ppm 248.268 ppm	159.98 ppm 299.892 ppm	σ'_{d}	161.78 ppm 270.207 ppm		

Fig. 3. **Relationship between the** charges on Mo and $\sigma_d' + \sigma_d'$ for **these compounds**

 $MoO₃S²⁻$ are similar to that of $MoS₄²⁻$, which can be analyzed from related **MO**'s. However, it is noteworthy that the contribution from $3t_2$ -2e transition to σ_p in MoS²⁻ and MoO²⁻ are quite different (-251.691 ppm for MoS²⁻ and -0 for $MoO₄²$. The 3t₂ orbital shares to 91% the character of the p orbital of **sulfur, and the 2e orbital to 75% resembles the character of the d orbitals of Mo.** The transition of $3t_2$ -2e is a result of the electron transfer from S to Mo(LMCT), **decreasing in shielding of Mo magnetic nuclei. That is one of the reasons why shielding of Mo nuclei decreases with increase of the number of S in** $[M_0O_{4-n}S_n]^2$ compounds. Another reason for this is that the energy gap **among transition orbitals decreases with increase of S, as it is shown that** $\sigma_p \propto -1/\Delta E$.

The experimental δ_{exp} and calculated δ_{cal} of chemical shifts for $\left[\text{MoO}_{4-n}\text{S}_{n}\right]$ ²⁻ compounds are given in Table 7. A good linear relationship between δ_{exp} and δ_{cal} can be found in Fig. 4.

Table 6. Paramagnetic contributions σ_n from some important transitions

⁹⁵Mo-NMR chemical shifts for compounds $[MoO_{4-n}S_n]^{2-}$

 221

Ions		δ_{\exp} (ppm)			
	Charge of Mo atom	H ₂ O	MoCN	$\delta_{\rm cal}$ (ppm)	
MoO ₄ ²	2.377	$\bf{0}$		0	
$[MoO3S]2-$	2.215	497		161.1	
$[MoO2S2]$ ²⁻	2.041	1066	964	376.0	
	1.864	1654	1587	743.3	
$[MoOS3]2-$ MoS ₄ ⁻	1.714	2258	2207	1110.7	

Table 7. ⁹⁵Mo-NMR chemical shifts δ_{exp} and δ_{cal} for $[M_0O_{4-n}S_n]^2$

The trend obtained by experimental observations can be satisfactorily explained by our theoretical study and, of course, the difference between δ_{exp} and $\delta_{\rm cal}$ in an absolute sense is evident, but quite reasonable, as it is well known that the MO energies, especially vacant MO energies, cannot be calculated correctly. However, the values of σ_p in Eq. (3) obtained by SOS are largely dependent on the difference in energy among transition orbitals. Besides, the Fenske-Hall parameters chosen for the calculation also affect the results. For instance, if 4d orbital parameters of $Mo^{(0)}$, instead of $Mo^{(IV)}$, are used for calculation, a linear relationship between δ_{\exp} and δ can also be kept, but the values of δ_{cal} are much lower than that of δ_{exp} . If 3d orbitals are involved for the sulfur atom, it is found that δ will increase by about 10 ppm for each sulfur atom.

References

- 1. Vold RR, Vold RL (1975) J Magen Reson 19:365
- 2. a Kautt WD, Kruger H, Lutz O, Maier H, Nolle A (1976) Z Naturforsch 31A:351 b Lutz O, Nolle A, Kroneek P (1977) Z Naturforsch 32A:505 c Martin M, John HE (1985) Coord Chem Rev 68:169 and reference therein
- 3. Coughln M (ed) (1980) Molybdenum and molybdenum-containing enzymes. Pergamon, Oxford
- 4. Brownlee RTC, Philip SB, Wedd AG (1988) Aust J Chem 41:1457
- 5. Hall MB, Fenske RF (1972) Inorg Chem 11:768
- 6. a Freier DC, Fenske RF, You Xz (1985) J Chem Phys 83:3526 b You Xz, Freier DG, Fenske RF (1983) J Mol Sei (China) 1:44
- 7. Schafer H, Moritz P, Weiss A (1965) Z Naturforsch B 20:603
- 8. Muller A, Diemann E, Heidborn U (1970) Z Anorg Allg Chern 376:125
- 9. Diemann E, Muller A (1973) Coord Chem Rev 10:79
- 10. Bursten BE, Schneider WF (1989) Inorg Chem 28:3292
- 11, Gheller SF, Hambley TW, Rodgers JR, Brownlee RTC, O'Connor MJ, Snow MR, Wedd AG (1984) Inorg Chem 23:2519